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Abstract

EÆcient transposition of large-scale matrices has been widely studied. These e�orts have focused on reducing

the number of I/O operations. However, in the state-of-the-art architectures, data transfer time and index

computation time are also signi�cant components of the overall time. In this paper, we propose an algorithm

that considers all these costs and reduces the overall execution time.

Our algorithm reduces the number of I/O operations signi�cantly by using two techniques: (1) writing

the data onto disk in prede�ned patterns and (2) balancing the numbers of read and write operations to

disk. The reduction of the number of I/O operations has a signi�cant impact on overall time for I/O, which

is measured by elapsed wallclock time. The reason for this is that the startup time for an I/O operation is

several orders of magnitude greater than the time for transferring an actual data byte, in state-of-the-art

disk systems. The idea behind balancing the I/O operations is to reduce the number of write operations

at the expense of an increased number of read operations, so that the total number of I/O operations is

reduced compared with the state-of-the-art. The index computation time, which is an expensive operation

involving two divisions and a multiplication, is eliminated by partitioning the memory into two bu�ers. The

expensive in-processor permutation is replaced by data collection operations. Our algorithm is analyzed

using the well-known Linear Model and the Parallel Disk Model.

The experimental results on a Sun Enterprise and a DEC Alpha show that our algorithm reduces the

execution time by about 50%, compared with the best known algorithms in the literature.

1



1 Introduction

Matrix transpose is a key primitive in a wide variety of data-intensive applications such as scienti�c com-

putations, media processing, automatic target recognition systems, and signal processing among others

[5, 8, 12, 17, 18, 20, 21, 23, 24]. In many data-intensive applications, the typical data size that is stored

on the disk is of the order of TeraBytes. High-performance computing platforms employ RAID [4] systems,

which have very high storage capacities.

Two models have been widely used in the literature to abstract the behavior of disk systems: the Parallel

Disk Model (PDM)[25] and the Linear Model (LM)[15]. The PDM is well suited to model I/O systems such

as the RAID [4]. In PDM, the data access cost is represented as dm=(DB)e � Tb, where m is the data size,

D is the number of disks, and Tb is time to transfer a block of data (B) between memory and disk. In the

Linear Model, the cost is represented as Ts+m� , where the Ts is startup time, m is data size, and � is data

transfer time per unit data.

In this paper, we propose an eÆcient algorithm for transposing large-scale matrices (out-of-core matrix

transpose). An input matrix of size N �N initially resides on the disk, N =
Qt�1

s=0 rs, where rs is a positive

integer. The matrix is to be transposed and stored in another array. The size of the available main memory,

M , is assumed to be smaller than the matrix size.

Several researchers have studied the out-of-core matrix transpose problem. A straightforward algorithm

performs matrix transpose using O(N3=2) I/O operations when M = O(N). Eklundh [13] proposed an

algorithm that has O(N logN) I/O complexity assuming B = N . Ari et al. [2] modi�ed the algorithm in

[13] to reduce the number of I/O operations at the expense of increased number of stages (passes). Floyd

[14] derived the upper and lower bounds on the number of I/O operations when M = 2B. Aggarwal et al.

[1] derived a lower bound on the number of I/O operations for the general case using PDM. Kaushik et al.

[15] reduced the number of I/O operations by a factor of 25% by combining two read operations compared

with the algorithm in [13].

All these e�orts focus on reducing the number of I/O operations only. However, the main costs in the

state-of-the-art architectures consist of not only the time for I/O but also the in-processor data transfer time

and index computation time. Figure 1 depicts the breakdown of the various costs in a typical transpose

operation.

Our out-of-core matrix transpose algorithm reduces the total execution time by reducing both the number

of I/O operations and the index computation time. The reduction in the number of I/O operations is achieved

by using eÆcient data layout on disk and balancing the number of read and write operations. We analyze

the complexity of our algorithm using the well-known Parallel Disk Model (PDM) and the Linear Model

(LM). A comparison of the algorithms with respect to the number of I/O operations is shown in Table 1.

To eliminate the index computation cost, our algorithm partitions the available memory into two bu�ers

(read and write bu�ers). The expensive in-processor permutation is replaced by collect operations. The
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Table 1: Comparison of the number of I/O operations (D=1)

Parallel Disk Model

Algorithm Linear Model
B � M

rs
B > M

rs

Aggarwal et al. [1] - 2N2

B logM=B min(N
2

B ; B) -

Kaushik et al. [15] N2

M

t�1P
s=0

(1 + rs)
2N2t
B

N2

B

t�1P
s=0

(BrsM + 1)

This Paper N2

M

t�1P
s=0

min(rs; 2(
p
2rs + 1)) 2N2

B logM=B min(N
2

B ; B) 2N2

B

t�1P
s=0

(
q

Brs
M + B

M )

Table 2: Example numbers of I/O operations (D = 1; N = 220 = 128� 128� 64; t= 3;M = 64 MBytes, and
each data is 8 Bytes)

Parallel Disk Model

Algorithm Linear Model
B = 512 KBytes B = 8 MBytes

Aggarwal et al. [1] - 96 �220 -

Kaushik et al. [15] 40 �220 96 �220 43 �220

This Paper 12 �220 96 �220 24 �220

write operations and collect operations are scheduled eÆciently to reduce the overall time. The size of each

bu�er is determined by the available memory size and the factorization of N . By using these techniques,

the index computation is replaced by inexpensive do-loops (see Section 4.2.2).

We implemented the algorithm on a single node of a SGI/Cray T3E based on DEC Alpha 21164 at the

San Diego Supercomputing Center (NPACI/SDSC) and a Sun Enterprise 4000 based on UltraSPARC at

the University of Southern California. The experiments were carried out for available main memory sizes

ranging from 16 MB to 64 MB and data sizes ranging from 512 MB to 2 GB. The results show that our

algorithm reduces the execution time by up to 50%.

The organization of the rest of this paper is as follows. In Section 2, two well-known disk models are

briey described. In Section 3, previous algorithms are discussed. Our algorithm is described in detail in

Section 4. Experimental results as well as comparisons with previous algorithms are presented in Section

5. Section 6 discusses a further extension of our algorithm to perform Bit-Matrix-Multiply/Complement

(BMMC) and Section 7 concludes the paper.
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Figure 1: Breakdown of total execution time for matrix transpose (a) On SGI/Cray T3E (DEC Alpha), M
= 16 MBytes, data size = 128 Mbytes (b) On Sun Enterprise, M = 64 MBytes, data size = 2 Gbytes

2 Disk Models

State-of-the-art disk systems employ sophisticated hardware and perform several optimizations to reduce

the I/O time. For example, many of these systems employ a disk bu�er, a library bu�er, and a controller,

and perform access reordering. Each of the above system features needs several parameters to describe its

behavior and such a model will be too complex to be useful.

CPU

Functional Unit

L1 Cache

L2 Cache

Main Memory Disk System

I/O Controller

Figure 2: Typical Disk system

Two models of disk systems that capture the key characteristics of such systems have been widely used

in the literature. One of them is the Parallel Disk Model (PDM) [25] (see Figure 3). It models the low level
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behavior of disk systems using several parameters: block size (B) which is the size of data that is transferred

between disk and memory in one I/O operation, number of disks (D), memory size (M), number of processors

(P ), and amount of data transferred (m). This model has been used to study RAID systems. The total

time for data transfer between disk and memory is proportional to the number of blocks transferred and is

inversely proportional to the number of disks on which the data resides. Thus, the cost can be represented

as dm=(DB)e � Tb, where Tb is the time to transfer a block of data between memory and disk.

Q0 Q1 QD-1 Parity0

QD QD+1 Q2D-1 Parity1

Q2D Q2D+1 Q3D-1 Parity2

Disk 0 Disk 1 Disk D-1 Disk D

Input/Output

Figure 3: Typical RAID system (RAID 3)

In another model [15], two costs are considered: startup time and data transfer time. The startup time is

a �xed time for setting up the data transfer between memory and disk. The rest of the cost is proportional

to the amount of data transferred. Thus, it can be represented as Ts +m� , where Ts is the startup time, m

is the data size, and � is the time to transfer unit data. Typically, Ts is in the msec range, and � is in the

tens of nsec/byte range.

3 Previous Algorithms

In this section, for the sake of completeness, two well-known algorithms are briey described. These two

algorithms provide the best performance among many other algorithms. The algorithm in [1] has been

designed using the Parallel Disk Model (PDM) and the algorithm in [15] has been designed using the Linear

Model. In Section 4, our algorithm is compared with these algorithms.

3.1 Matrix Transpose

In the matrix transpose problem, an input matrix of size N �N initially resides on the disk. N =
Qt�1

s=0 rs,

where rs is a positive integer. If N is a prime number, we can add dummy rows to make N nonprime. The

5



1 for s = 0 to logM=B min(B;N=B) - 1 // for each stage

2 for j = 0 to N2=M � 1 // for each step
3 Read M/B blocks;
4 Perform permutation of data in memory;
5 Write M/B blocks;

Figure 4: Pseudo-code for Aggarwal et al.'s algorithm

input matrix is to be transposed and stored in the other array. The available memory size, M , is assumed

to be smaller than the input matrix size. Throughout this paper, to illustrate the key ideas, we use square

matrices. However, the algorithms can be easily extended to rectangular matrices as well using the technique

in [15]. For the sake of simplicity, throughout this paper, we assume that all the ratios are integers.

3.2 Aggarwal's Algorithm

Aggarwal et al. [1] showed a lower bound on the number of I/O operations to perform matrix transpose.

A pseudo code for the algorithm is shown in Figure 4. In this algorithm, as many blocks as the size of the

available memory are read into memory. Then, the data is permuted and written onto the disk. The number

of I/O operations for this approach is shown in Table 1 (page 3).

In this algorithm, rs is restricted to be �M=B; 0 � s � t� 1. In our algorithm, we relax this restriction

by developing a technique to use a larger block size. Also, this algorithm does not consider index computation

time. Index computation is needed to perform permutation of the data in memory.

3.3 Kaushik's Algorithm

In this algorithm [15], there are t stages, where N =
Qt�1

s=0 rs. Each stage consists of N2=M steps. In each

step, M=N rows are read into memory and a permutation of the data is performed in the memory. Then,

the data is written back to the disk in ri; 0 � s � t� 1, write operations. Thus, the number of read (write)

operations in each step is 1 (rs). A pseudo code for the algorithm is shown in Figure 5. The total number

of I/O operations using the Linear Model and the Parallel Disk Model are shown in Table 1 (see page 3).

Although the number of I/O operations and the time to transfer data between memory and disk are

considered, the total number of read and write operations are not optimized. Also, the index computation

time is not considered.

4 An EÆcient Algorithm

We present an overview of our approach in Section 4.1. The subsequent sections provide all the details of

our approach and analyses using the PDM and LM.
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1 for s = 0 to t-1 // for each stage
2 for j = 0 to M=B � 1 // for each step
3 Read M amount of data;
4 Perform permutation of data in memory;
5 for k = 0 to rs � 1
6 Write M=B amount of data;

Figure 5: Pseudo-code for Kaushik et al.'s algorithm

4.1 Overview

One of the key features of our algorithm is the reduction in the total number of I/O operations, which is

achieved by means of an eÆcient data layout scheme on the disk. For example, in [15], there are three I/O

operations (one read operation and two write operations) in each step whenM = 2N and B = N (see Figure

6). The concept of a step is explained in detail in Section 4.2. Our algorithm requires only a single write

operation in each step as against two write operations in the case of the previous algorithm in [1, 15]. Since

our algorithm consists of only the same number of steps as the previous algorithms, there is a considerable

reduction in the total number of write operations.

This reduction in write operations is a consequence of the eÆcient data layout scheme (Ls; 0 � s � t�1)

employed. The proposed layout scheme provides a means for reducing the number of write operations while

maintaining the same number of read operations. Thus, the number of I/O operations is reduced from three

to two in each step which leads to a 33% reduction in the total number of I/O operations.

Another technique used in our algorithm is balancing the numbers of read and operations. In balancing

the numbers of read and write operations, the key idea is that the total number of I/O operations can be

reduced by reducing the number of write operations at the expense of an increased number of read operations.

For example, when rs = 32, in each step, the number of read (write) operations in [15] is 1 (32), where rs is

explained in Section 4.2. In our algorithm, we increase the number of read operations to 9 in order to reduce

the number of write operations to 9. This results in a 45% reduction in the total number of I/O operations.

Note that a straightforward method to balance the number of read and write operations reduces the total

number of I/O operations by only one (see Section 4.2). The data that is written onto the disk in z write

operations in the previous algorithm is written in one write operation in our algorithm (see Figure 7). Thus,

there is a reduction in the number of write operations by a factor of z. However, this writing causes the

data to be \scattered": consecutive superblocks are not contiguous as shown in Figure 7. The superblock is

a chunk of memory of size M=rs at the s
theorem stage, 0 � s � t � 1, and is explained in detail in Section

4.2. In a subsequent read operation, to read the data that is scattered, z read operations are needed. By

choosing an optimal value of z, the total number of I/O operations is reduced.

As shown in Figure 1 (see page 4), the index computation takes up a signi�cant portion of the total
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Superblock 1

Memory

Read

Disk Disk

Write

(1 Read) (2 Writes)

Superblock 0

Superblock 1

Memory

Read

Disk Disk

Write

Read

Read

Superblock 0

Superblock 1

Superblock 0

Superblock 0

Superblock 0

Superblock 1

Superblock 1

Superblock 0

Superblock 1

Superblock 1

Superblock 0

Superblock 0

Superblock 1

Superblock 1

Superblock 0

(a) Previous Approach [12]

(b) Our Approach

Figure 6: An illustrative example (rs = 2)

execution time. In the previous algorithms [1, 15], the entire available memory is used for reading data from

disk. Even though this approach maximizes the memory utilization, it results in excessive index computation

cost. (Index computation refers to computing the source or destination addresses of each data.)

To eliminate the index computation cost, the available memory is partitioned into two di�erent-size

bu�ers (read and write bu�ers). Instead of performing a permutation before every write operation, only the

data needed for each write operation is moved into the write bu�er. This is denoted as a collect operation.

The stride of the data access for the collect operation is constant. Thus, it can be performed using inexpensive

do-loops.

If the same schedule as in the previous algorithms is used (collect operations followed by write operations),

then the size of the write bu�er should be M=2. However, in our algorithm, the utilization of the write bu�er
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Superblock 3
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2nd
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Figure 7: An illustrative example (rs = 4 and z = 2)

1 for s = 0 to t-1 // for each stage
2 for step = 0 to N2=M -1 // for each step
3 Read data from disk using the layout Ls�1;
4 Permute the data on memory;
5 Write data to disk using the layout Ls;

Figure 8: Reducing the number of I/O operations

is increased using our schedule which results in a smaller write bu�er. In our schedule, a write operation

follows each collect operation. Since the read bu�er size is less than the available memory size, the number

of I/O operations is increased slightly. However, as shown in Section 5, the total execution time is reduced

signi�cantly due to reduction in the index computation time.

4.2 Details

Additional details of our algorithm as well as the analysis are presented in this section. However, due to

space limitation, proofs of the theorems are not included.

4.2.1 Reducing the Number of I/O Operations

Our algorithm to reduce the number of I/O operations is elaborated here (see Figure 8). Note that the

matrix size is N �N and N =
Qt�1

s=0 rs.

9



The algorithm consists of t stages (Line 1). In the stheorem stage, 0 � s � t� 1, a submatrix is de�ned

as follows. Let us denote the data at row i and column j in the original input matrix as di;j . A submatrix,

Sk;l, 0 � k; l � Rs � 1, consists of di;j ; kN=Rs � s � (k + 1)N=Rs � 1; lN=Rs � j � (l + 1)N=Rs � 1, where

Rs =
Qs

s=0 rs.

In each stage, there are N2=M steps (Line 2). In each step, the data is �rst read into memory (Line 3).

The data in the memory that is in the same submatrix is moved to a contiguous chunk of the memory (Line

4). Let us denote this contiguous chunk of memory as a superblock. There are rs superblocks of size M=rs.

The superblocks are written onto the disk (Line 5). The layout, Ls; 0 � s � t� 1, speci�es the locations of

the superblocks on the disk.

The layout, the schedule of reading data from the disk, and the schedule of writing data onto the disk

are explained in the following four cases. Case 1 and Case 2 pertain to the cases where as much data as the

memory size can be read from the disk or written onto the disk in one I/O operation (B =M). Our analysis

shows that eÆcient data arrangement reduces the number of I/O operations by a factor of (rs+1)=rs (Case

1). In addition to this, if rs � 8 (Case 2), balancing the number of I/O operations further reduces the total

number of I/O operations.

If M=rs < B < M (Case 3), our algorithm provides the best performance compared with the previous

algorithms. In the other case, B �M=rs (Case 4), our algorithm has the same performance as the previous

algorithm in [1] with respect to the number of I/O operations.

Note that reducing the index computation time (discussed in Section 4.2.2) further improves the perfor-

mance in all the cases.

Case 1: (B = M and 1 < rs < 8) The key idea here is data arrangement on the disk, Ls. The matrix

is �rst partitioned into Rs�1 areas. Each area includes N=Rs�1 rows. The layout and schedules of reading

and writing data in each area are explained for two cases.

If rs = 2, the layout, Ls is as follows: the �rst superblock is stored in the jtheorem; b(j+1)=2c mod 2 = 0,

superblock and the second superblock is stored in the rest of the superblocks (see Figure 9). The number in

each small square denotes a data element. Notice that the data is in row-major order in the initial matrix

at stage 0 and in column-major order in the last matrix in stage 2. Using this layout, in the �rst step, the

�rst and second superblocks are stored on the disk in one write operation since they are contiguous in the

memory as well as on the disk. This is illustrated in Figure 9. In the �gure, at each stage, the left (right)

matrix is initial (�nal) matrix. In the second step, the third and fourth superblocks are saved on disk, and

so on. In the next stage, the data in the second and third superblocks are read into the memory using one

read operation, and data in the fourth and �fth superblocks are read into the memory in the next step.

If rs > 2, in the sttheorem step, two superblocks, (st + 1) mod rs and (st + 2) mod rs, are stored in one

write operation and the rest of the data is written in rs � 2 write operations which results in rs � 1 write

operations (see Figure 10). The �gures in the middle show the data in memory after permutation.
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A comparison of the numbers of I/O operations in the algorithm in [15] and our algorithm is shown in

Table 3.

Table 3: Number of I/O operations in each step

rs 2 3 4

Kaushik's Algorithm [15] 3 4 5

This Paper 2 3 4

Reduction 33% 25% 20 %

Case 2: (B =M and rs � 8) In this case, the total number of I/O operations can be further reduced by

balancing the numbers of read and write operations in addition to the data layout and the schedule explained

in Case 1. In Kaushik et al.'s algorithm, the di�erence between the numbers of read and write operations

is large. That is, in each step, the number of read operations is 1 and the number of write operations is rs.

In our algorithm, we develop a technique that reduces the number of write operations at the expense of an

increased number of read operations.

Note that if a straightforward method is used, the number of write operations is reduced to rs�z, where z
is the number of the new read operations. Then, the new total number of I/O operations is (rs�z)+z = rs.

The total number of I/O operations is reduced by only one. In our algorithm, we decrease the number

of write operations to approximately rs=z. Then, the total number of I/O operations can be reduced by

choosing an optimal value of z.

In the previous algorithms, each superblock is stored in one disk write operation. In our algorithm, z

blocks are stored on the disk in one write operation. Thus, the number of write operations is reduced by

a factor of z. In each read operation, to read data that is \scattered" in noncontiguous locations, we need

to perform z read operations. It can be shown that the optimal value of z is
p
2rs in the stheorem stage,

0 � s � t� 1.

The total number of I/O operations in the algorithm in [15] and in our algorithm are compared in Table

4. The algorithm in [1] is not compared here since it cannot be used in this case. The following Theorem 1

applies to Case 1 and Case 2.

Theorem 1 In the Linear Model, the total number of I/O operations in our algorithm is
N2

M

Pt�1
s=0min(rs;

p
2rs + 1).

Case 3: (M=rs � B < M) This is similar to Case 2; the ony di�erence is the size of the block. It relaxes

the restriction (rs �M=B) that was imposed in [1]. In our algorithm, we can increase the value of rs to be

larger than M=B so that the number of stages is decreased. The optimal value of z is Brs=M .
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Theorem 2 In the Parallel Disk Model, the total number of I/O operations in our algorithm is
2N2

M

Pt�1
s=0(
q

rsM
B + 1), where M

rs
< B < M , 0 � s � t� 1.

Case 4: (B �M=rs) In this case, our algorithm is the same as in [1].

4.2.2 Reducing Index Computation Time

In the previous algorithms, the available memory is fully utilized to reduce the number of I/O operations.

In other words, in a read operation, as much data as the size of the memory is read from disk. However, this

results in a large index computation time. Permuting the data within the memory requires the destination

location of each data element to be computed.

To reduce the total execution time, we eliminate the expensive index computation by using the algorithm

shown in Figure 11. In our algorithm, we partition the memory into two di�erent size bu�ers: one with

size Mr (Read bu�er) and the other with size Mw (Write bu�er). The read bu�er is used for reading data

from disk. After reading the data, there are rs=z sets of collect and write operations, where z is a positive

integer and explained in Section 4.2.2. In each collect operation, data in z supermatrices is collected in the

write bu�er. The sizes of the write and read bu�ers are determined as Mz=(rs + z) and MRs=(rs + z),

respectively.

In the collect operation, the data in the z superblocks is located in MrRs�1=N chunks of data. The

amount of data in each chunk is N=Rs�1, where Rs =
Qs

i=0. Thus, to collect the data in z superblocks,

multiple-level do-loops are necessary. In each do-loop, the required computations are simple additions

to compute loop-variables. Note that, in the previous algorithms [1, 15], the required computations for

permutation of the data consist of both the index computations and the loop-variable computations. In our

algorithm, since the loop-variables are used to collect data to the write bu�er, the index computation is

eliminated.

The collected data in the write bu�er is written onto the disk in a write operation (Line 6). Even though

the number of I/O operations increases by a factor ofM=Mr, the total execution time is reduced signi�cantly

due to the elimination of index computation time.

Table 4: Number of I/O operations in each step

rs = 32 rs = 128
rs

Kaushik's Algorithm Our Algorithm Kaushik's Algorithm Our Algorithm

# of Read operations 1 9 1 17

# of Write operations 32 9 128 17

Total 33 18 129 34
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5 Experimental Results

We implemented the algorithms on a DEC Alpha system (SGI/Cray T3E) at the San Diego Supercomputing

Center (SDSC) and a Sun Enterprise 4000 system at the University of Southern California. For comparison

purposes, Kaushik et al.'s algorithm described in Section 3.3 was also implemented.

Note that Aggarwal et al.'s algorithm described in 3.2 has the same total execution time as the Kaushik

et al.'s algorithm in our experiments. Even though the two algorithms perform permutation using di�erent

methods and the data being permuted are di�erent, the permutation times are the same. If the block size

is smaller than M=rs at the s
theorem stage, 0 � s � t � 1, where t is the number of stages, then both the

algorithms require the same I/O time. I/O time is di�erent for the two algorithms when the amount of data

transferred in one I/O operation is smaller than B. The amount of the data transferred in one I/O operation

in our experiments ranges from 128 KBytes to 2 MBytes and the typical size of B in state-of-the-art platforms

is 4 KBytes. Thus, the performance of the two algorithms are the same in our experiments. Therefore, the

execution time reported under the heading \previous algorithm" refers to both the algorithms.

The system parameters of the computing platforms in which our experiments were conducted are sum-

marized in Table 5.

Table 5: Computing Platforms on which experiments were conducted

Platform SGI/Cray T3E Sun Enterprise

Processor DEC Alpha (300 MHz) UltraSPARC (336 MHz)

OS UNICOS/mk 2.0.3.39 SunOS Release 5.6 Version Generic 105181-11

Compiler Cray Standard C Version 6.1.0.1 SC4.0

The amount of main memory allocated to the data was varied from 16 MBytes to 64 MBytes and the

data size was varied from 512 MBytes to 2 GBytes. For each parameter value, the algorithms were executed

5 times and the maximum, average, and minimum values were calculated. The speedup of our algorithm

over the previous algorithms was calculated for each parameter setting. The results of our experiments are

shown in the �gures from Figure 12 to Figure 17. The results show that our algorithm reduces the execution

time by about 50%.

The execution times correlate well with our analysis. From our experiment in implementing the previous

matrix transpose algorithm on the Sun Enterprise, the time for I/O is 10 nsec/byte, the time for index

computation is 25 nsec/byte, and the time for data movement is 20 nsec/byte. In this case, the time

for I/O is measured as the elapsed wallclock time, which is the most tangible method of measuring I/O

performance. The time for I/O is obtained by dividing the total elapsed time by the data size. The time for

index computation involves the computation of either the source or the destination address. The destination

address y of a data located in x is based on the equation is y = x
a + xmodb, where a and b are variables

13



calculated based on the step and stage. Thus, a single index computation involves two divisions and a

multiplication, rendering it an expensive operation. For example, on the DEC Alpha 21264, an integer

multiplication takes 13 cycles and integer divide is not directly supported. Thus, when the data size is 2

GBytes, the expected total execution time is 2 G � 3 stages � 2 (read and write) � (10+25+20) nsec =

660 sec which is similar to the actual 642 sec. For the size of 512 (128) MBytes, the expected time is 165

(41) sec and actual time is 148 (37) sec.

The execution time is increased about four times as the data size is increased four times. This is

reasonable since the three major costs (I/O time, index computation time, and memory-memory transfer

time) are proportional to the data size. Thus, we expect the same speedup for the larger data sizes than 2

GBytes.

6 Further Extensions

Our matrix transpose algorithm can be extended to the more general problem of Bit Matrix Multiply

Complement (BMMC) [7]. In this problem, we consider a matrix X of size N � N . The permutation of

the data is represented using a nonsingular matrix A of size 2 logN � 2 logN and a vector c, where each

of the entries of A and c is a binary number. The address of an element is represented in bit notation. A

target address is y = (y0; y1; :::; y2 logN�1), and source address is x = (x0; x1; :::; x2 logN�1), where the �rst

logN bits represent the row number and next logN bits represent the column number. The target address

is obtained from the source address by yi = (
2 logN�1L

j=0

ai:jxj) � ci; 0 � i � 2 logN � 1, where the � denotes

an exclusive-or operation. A speci�c case of BMMC is a matrix transpose.

The BMMC consists of many steps. In each step, there are three basic operations as in the case of matrix

transpose: read data from disk, permutation of the data on memory, and write data onto disk. Since the key

ideas in our matrix transpose algorithm (reducing the number of I/O operations and index computation)

are independent of the permutation method of the data in memory, our algorithm will greatly enhance the

computational eÆciency of the BMMC problem.

To reduce the number of I/O operations, the algorithm in Figure 8 is used to employ the two techniques:

eÆcient data layout scheme and balancing the number of I/O operations. The permutation of the data in

memory is performed as in [7]. To reduce the index computation time, the algorithm in Figure 11 is used:

the available memory is partitioned into two bu�ers, the permutation is replaced by collect operations, and

the collect operations and write operations are scheduled to maximize the memory utilization.

7 Conclusion

In this paper, we presented an eÆcient algorithm for large-scale matrix transposition. One of the key

achievements of our technique is that it takes into account all aspects of matrix transposition that are

computationally intensive in the state-of-the-art computing platforms. Contrary to the previous works that

14



have focused on the reduction of the number of I/O operations, we identi�ed major costs in state-of-the-art

computing platforms and these costs are reduced in addition to the number of I/O operations. The generality

of the main ideas that constitute our algorithm o�er an immense potential for further research into applying

these ideas to a variety of algorithms that operate on large data sets. These include problems that have

recursive structure such as merge sort, FFT, and graph problems.
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Figure 9: An illustrative example (N = 8 =
2Q

s=0

2, and M = 16)
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Figure 10: An illustrative example (N = 9 =
1Q

s=0

3, and M = 27)

1 for s = 0 to t - 1 // for each stage
2 for step = 0 to N2=Mr - 1 // for each step
3 Read data from disk;
4 for i = 0 to rs=z - 1
5 Move data that has the itheorem supermatrix to the write bu�er;
6 Write data in write bu�er to disk;

Figure 11: Pseudo-code for our algorithm
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Figure 12: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (c) Maximum (d) Speedup,
M = 16 MBytes
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Figure 13: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (c) Maximum (d) Speedup,
M = 32 MBytes
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Figure 14: Experimental Results on DEC Alpha (T3E) (a) Minimum (b) Average (d) Speedup, M = 64
MBytes
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Figure 15: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d) Speedup,
M = 16 MBytes
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Figure 16: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d) Speedup,
M = 32 MBytes
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Figure 17: Experimental Results on Sun Enterprise (a) Minimum (b) Average (c) Maximum (d) Speedup,
M = 64 MBytes
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